
On the Equivalence of Automaton-based Representations of Time Granularities

Ugo Dal Lago
Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy

dallago@cs.unibo.it

Angelo Montanari
Dipartimento di Matematica e Informatica, Università di Udine, Italy

montana@dimi.uniud.it

Gabriele Puppis
Dipartimento di Matematica e Informatica, Università di Udine, Italy

puppis@dimi.uniud.it

Abstract

A time granularity can be viewed as the partitioning
of a temporal domain in groups of elements, where each
group is perceived as an indivisible unit. In this paper we
explore an automaton-based approach to the management
of time granularity that compactly represents time gran-
ularities as single-string automata with counters, that is,
Büchi automata, extended with counters, that accept a sin-
gle infinite word. We focus our attention on the equivalence
problem for the class of restricted labeled single-string au-
tomata (RLA for short). The equivalence problem for RLA
is the problem of establishing whether two given RLA rep-
resent the same time granularity. The main contribution of
the paper is the reduction of the (non-)equivalence problem
for RLA to the satisfiability problem for linear diophantine
equations with bounds on variables. Since the latter prob-
lem has been shown to be NP-complete, we have that the
RLA equivalence problem is in co-NP.

1. Introduction

The notion of time granularity comes into play in a num-
ber of computer science scenarios, ranging from the speci-
fication and verification of timed workflow systems to the
management of temporal constraints, from the design of
temporal databases to temporal data mining applications.

According to a commonly accepted perspective, any
time granularity can be viewed as the partitioning of a tem-
poral domain in groups of elements, where each group is
perceived as an indivisible unit (a granule). Most granulari-
ties of practical interest are modeled as infinite sequences

of time granules, which present a repeating pattern and,
possibly, temporal gaps within and between granules. A
number of different formalisms to finitely represent infinite
time granularities have been proposed in the literature [11],
based on algebraic [3, 15, 17, 18], logical [5, 10], string-
based [20], and automaton-based [7, 4] approaches.

We restrict our attention to the automaton-based ap-
proach. First, we introduce single-string automata and we
show that they are as expressive as Wijsen’s string-based
models. Next, we show how to extend single-string au-
tomata with counters to take advantage of regularities of
modeled granularities. Besides making the structure of the
automata more compact, this allow us to efficiently deal
with those granularities which have a quasi-periodic struc-
ture. Single-string automata with counters are then used to
provide an effective solution to the equivalence problem for
granularity specifications. The decidability of such a prob-
lem implies the possibility of effectively testing the seman-
tic equivalence of two different specifications, thus making
it possible to use smaller, or more tractable, representations
in place of bigger, or less tractable, ones.

The rest of the paper is organized as follows. In Section
2 we define the notion of time granularity and we briefly de-
scribe the string-based model of time granularities. In Sec-
tion 3 we outline the distinctive features of the automaton-
based approach, focusing our attention counters and mul-
tiple transitions, and we show how the fundamental prob-
lem of granularity equivalence can be formulated in terms
of the proposed class of automata. In addition, we briefly
analyze the relationships between the automaton-based ap-
proach and the logical one. In Section 4 we introduce Re-
stricted Labeled single-string Automata and we provide a
formal characterization of the words they recognize. Fi-

Day

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526

Week

1 2 3 4

BusinessWeek

1 2 3 4

BusinessMonth

1

Figure 1. Some examples of time granularities.

nally, in Section 5 we show how the equivalence problem
for RLA can be efficiently solved by reducing it to the
satisfiability problem for linear diophantine equations with
bounds on variables. The last section provides an assess-
ment of the work and outlines future research directions.

2. A Framework for Time Granularity

The idea underlying all different notions of time granu-
larity that have been proposed in the literature is that any
time granularity can be viewed as a suitable partition of a
fixed temporal domain. The temporal domain is usually as-
sumed to be left-bounded and discrete (for instance, the lin-
ear order (N+, <)). As a matter of fact, one of the main mo-
tivations for such an assumption is the observation that most
problems of practical interest involve granularities that are
ultimately periodic with respect to a fixed bottom granular-
ity and left-bounded (that is, they have an initial granule). It
should be also noted that, by viewing (Z, <) as the disjoint
union of (N+, <) and its reverse order, it is not difficult to
extend any given formalism from the case of left-bounded
granularities to the case of bi-infinite granularities (the in-
terested reader can read [19] for an application of such an
idea in the field of formal languages and automata).

Definition 1. A time granularity is a partition G of a subset
T of the temporal domain (N+, <) such that for every pair
of distinct sets g, g′ ∈ G (hereafter called granules), either
t < t′ holds for all t ∈ g, t′ ∈ g′ or t′ < t holds for all
t ∈ g, t′ ∈ g′.

The ordering on N+ induces an ordering on the set of gran-
ules of G: given g, g′ ∈ G, g < g′ holds iff t < t′ holds
for every t ∈ g, t′ ∈ g′. Such an ordering naturally yields
a labeling of granules: we say that x is the label of a gran-
ule g ∈ G, and we write G(x) = g, if g is the x-th el-
ement of G according to the induced order <. Note that
Definition 1 captures both granularities that cover the whole
temporal domain, such as Day and Week, and granularities
with gaps within and between granules, like, for instance,
BusinessWeek and BusinessMonth (see Figure 1).

Clearly, since the set of all structures that satisfy Defini-
tion 1 is uncountable, it is not possible to deal with all pos-
sible granularities by means of a finitary formalism. How-
ever, by restricting to those granularities that, ultimately,

periodically group instants of the temporal domain (most
granularity applications are only concerned with such a kind
of structures), one can easily succeed in representing and
manipulating them through finite objects.

In [20], Wijsen proposes a string-based framework for
time granularities. Infinite granularities are modeled as in-
finite words over an alphabet consisting of three symbols,
namely, � (filler), � (gap), and o (separator), which are
respectively used to denote time points covered by some
granule, to denote time points not covered by any granule,
and to delimit granules. A typical example is the infinite
(ultimately periodic) word �������o�������o...,
which represents the granularity BusinessWeek over the
temporal domain of days. In order to guarantee a one-to-one
correspondence between infinite strings and granularities,
as well as to ease the treatment of the problems of granular-
ity equivalence and granule conversion, Wijsen introduces
an aligned form for string-based specifications of granular-
ities. Such a form forces any separator o to occur immedi-
ately after an occurrence of �. As pointed out by Dal Lago
and Montanari [7], if we encode each occurrence of the sub-
string �o by a single symbol J, we align the symbols of the
string-based representation and the elements of the tempo-
ral domain, thus establishing a one-to-one correspondence
between strings and granularities. Formally, we say that an
infinite word w ∈ {�,�,J}ω represents a granularity G
if, for every t, x ∈ N+, we have t ∈ G(x) iff w[t] 6= �
and the substring w[1, t − 1] contains exactly x − 1 occur-
rences of J. In the following, we shall adopt this simplified
setting to represent granularities. In particular, we can iden-
tify ultimately periodical granularities with ultimately peri-
odic words and we can finitely represent them by specifying
their prefix and repeating pattern. Hence, any (finite or in-
finite) ultimately periodic time granularity can be modeled
as an ordered pair (u, v) of finite words over the alphabet
{�,�,J}, called granspec, where v differs from the empty
string ε. As an example, the granularity BusinessWeek is
represented by the granspec (ε, ����J��).

3. From Strings to Automata

The idea of viewing granularities as ultimately periodic
words naturally connects time granularity to the fields of

2

s0 s1 s2 s3

s4s5s6

� � �

�

J�

�

Figure 2. An SSA representing BusinessWeek.

formal languages and automata. An automaton-based ap-
proach to time granularity, which generalizes the string-
based one in several respects, was originally proposed in
[7]. The basic idea underlying the automaton-based ap-
proach to time granularity is the following one: we take
a sequential Büchi automaton M recognizing a single infi-
nite word w ∈ {�,�,J}ω (hence the name single-string
automaton) and we say that M represents the granularity G
iff w represents G.

Definition 2. A single-string automaton (SSA for short) is
a quadruple M = (S, Σ, δ, s0), where
• S is a finite set of states,
• Σ is a finite alphabet (usually {�,�,J}),
• δ is a total transition function from S to Σ× S,
• s0 ∈ S is the initial state.

The run of M is the (unique) pair (s, w) ∈ Sω × Σω

such that s[1] = s0 and, for every i > 0, δ
(
s[i]

)
=(

w[i], s[i + 1]
)
. We say that w is the infinite word recog-

nized by M if there exists s ∈ Sω such that the pair (s, w)
is the unique run of M . It is immediate to see that single-
string automata capture all and only the ultimately periodic
granularities, namely, those granularities that can be repre-
sented by granspecs. Figure 2 depicts an SSA representing
the granularity BusinessWeek.

The equivalence problem for SSA-based representations
of time granularities trivially reduces to testing whether two
given SSA recognize the same ultimately periodic word
(i.e., automata equivalence problem).

Such a problem can be easily solved in linear time with
respect to the number of states of the involved automata:
given two SSA M and N recognizing two ultimately pe-
riodic words w1 and w2, (i) compute the minimum prefix
u1 (respectively, u2) and the minimum repeating pattern v1

(respectively, v2) of w1 (resp. w2), and (ii) test whether
u1 = u2 and v1 = v2 (notice that this holds iff w1 = w2,
namely, M and N are equivalent SSA).

As regards the prefix of the ultimately periodic word rec-
ognized by an SSA, one can exploit the following property
to test whether u is the minimum prefix of w = u · vω: u
is the minimum prefix of w = u · vω iff u[|u|] 6= v[|v|] (if
this is not the case, then consider the proper prefix u[|u|−1]
instead of u).

As for the repeating pattern of the ultimately periodic
word recognized by an SSA, one can exploit Knuth-Morris-
Pratt string matching algorithm [14] to compute the first
non-trivial occurrence of v in v ·v (if v occurs as a substring
in v · v starting from the position i > 1, then v[1, i − 1] is
the minimum repeating pattern of u · vω, for any finite word
u).

These properties lead to a straightforward algorithm that
tests the equivalence of two given single-string automata M
and N in time O(|M | + |N |), where |M | and |N | denote
the number of states of M and N , respectively.

3.1. Counters and Multiple Transitions

A major limitation of both string-based and automaton-
based formalisms is that, whenever the granularity to be
represented has a long prefix and/or a long repeating pat-
tern, they produce lengthy representations. As an example,
recall that leap years recur with exactly the same pattern
every 400 years; then, it is easy to see that the size of any
granspec/SSA representing years (or months) of the Grego-
rian Calendar in terms of days, must have size greater than
105. In such cases, computations on representations of time
granularities may become rather expensive. In the follow-
ing, we extend and refine the automaton-based approach by
introducing counters in order to compactly encode redun-
dancies of temporal structures. Precisely, we exploit the
possibility of activating different transitions from the same
(control) state and we rule them through guards envisaging
the values of the counters.

Definition 3. An extended single-string automaton (ESSA
for short) is a tuple M = (S, I,Σ, δ, γ, s0, c0), where
• S is a finite set of control states,
• I is a finite set of counters, whose valuations belong to

the set CI of functions from I to N,
• Σ is a finite alphabet,
• δ is a total primary transition function from S to CICI ×

Σ× S,
• γ is a partial secondary transition function from S to

LI × CICI × Σ × S, with LI being a suitable logical
language interpreted over N with free variables belong-
ing to I ,

• s0 ∈ S is the initial state,
• c0 ∈ CI is the initial valuation.

As in the case of single-string automata, the run of an
ESSA is unique. In order to formally define it, we need to
introduce the notion of configuration. A configuration for
an ESSA M is a pair state-valuation (s, c), where s ∈ S
and c ∈ CI . The transitions of M are taken according to a
total function ∆M : S×CI → Σ×S×CI such that

i) if γ(s) = (ϕ, σ, a, r) and c satisfies ϕ, then ∆M (s, c) =
(a, r, σ(c)),

3

s0 s1 s2 s3 s4

s5 s6

s7 s8

i ← i + 1

�

i mod 26 = 0

�

� � �

i ← 0; j ← j + 1

J

j
m

o
d

1
2

=
1

�

i
←

0;
j
←

j
+

1

J

k mod 4 = 0 ∧

k mod 400 6= 100 ∧

k mod 400 6= 200 ∧

k mod 400 6= 300

�

i ← 0; j ← j + 1

J

j
m

o
d

1
2
6=

3
∧

j
m

o
d

1
2
6=

5
∧

j
m

o
d

1
2
6=

8
∧

j
m

o
d

1
2
6=

1
0

�

�

i ← 0; j ← j + 1

J

j mod 12 = 0

i ← 0; j ← 0; k ← k + 1

J

Figure 3. An ESSA representing Month.

ii) if γ(s) is not defined or c does not satisfy the for-
mula in the first component of γ(s), then ∆M (s, c) =
(a, r, σ(c)), where δ(s) = (σ, a, r).

Intuitively, a secondary transition of an ESSA is activated if
its guard is satisfied by the valuation c; otherwise, a primary
transition is activated. The (unique) run of an ESSA M is
then defined as the triple (s, c, w) ∈ Sω × Cω

I × Σω such
that (i) s[1] = s0, (ii) c[1] = c0, and (iii) ∆M (s[i], c[i]) =
(w[i], s[i + 1], c[i + 1]) for all i > 0. Given an ESSA M
and its (unique) run (s, c, w), we say that w is the word
recognized by M .

An interesting example of ESSA is given by Figure 3
which depicts an ESSA representing the granularity Month
in terms of the granularity Day. The automaton uses three
counters, i, j, and k, to store the index of the current day,
current month, and current year, respectively. Each counter
is initialized to 0, that is, the initial valuation c0 is such
that c0(i) = c0(j) = c0(k) = 0. Control states are rep-
resented by circles, while transitions are represented by ar-
rows annotated with the update operators. e.g., j ← j + 1,
and the recognized symbol, e.g., �). Primary and sec-
ondary transitions are identified by continuous and dashed
arrows, respectively; secondary transitions have guards,
e.g., k mod 4 = 0, which are specified as additional an-
notations of the corresponding dashed arrows.

From the above example, it is clear how ESSA can be
exploited to compactly encode redundancies of temporal
structures. However, the notion of ESSA is too general to be
of practical interest: if we do not restrict the set of admis-
sible formulas and update operators for primary and sec-

ondary transitions, several fundamental problems turn out
to be undecidable. As an example, if we allow guards of the
form x = 0 and update operators of the form x ← x − 1
and x ← x + 1, then the halting problem for Minsky (two-
counters) machines [16] can be easily reduced to the equiv-
alence problem for ESSA, thus showing that the latter prob-
lem is undecidable.

In [7], Dal Lago and Montanari suggest to
i) restrict to guards which are conjunctions of atomic for-

mulas of the form t1 = t2 or t1 6= t2, where both t1 and
t2 are integer constants or terms of the form i mod d,
with i ∈ I and d ∈ N+;

ii) restrict to update operators which are functional com-
positions of the basic operators i ← 0 and i ← i + 1,
where i ranges in I and the operator i ← 0 (respec-
tively, i ← i + 1) maps a valuation c to the valu-
ation c[0/i] (respectively, c[c(i) + 1/i]), with c[x/i]
denoting the valuation such that c[x/i](i) = x and
c[x/i](j) = c(j) for every j 6= i.

The resulting class of automata, called reducible ex-
tended single-string automata (shortly RESSA), is expres-
sive enough to compactly encode granularities of practical
interest and well behaved, namely, they guarantee decid-
ability results for many relevant problems. As an exam-
ple, the automaton in Figure 3 is a RESSA. Moreover, one
can effectively map a RESSA to an equivalent SSA, thus
proving that RESSA are as expressive as (but more com-
pact than) SSA.

The equivalence between RESSA and SSA is obtained
by defining, for any given RESSA M , an abstraction rela-

4

tion over the configurations of M , which turns out to be
an equivalence of finite index compatible with the transi-
tion function ∆M (see [2, 10] for similar constructions).
Formally, we say that a relation ∼ over a (possibly infi-
nite) set X is compatible with a function f : X → X
iff, for every x, x′ ∈ X , x ∼ x′ implies f(x) ∼ f(x′).
If M = (S, I,Σ, δ, γ, s0, c0) is a RESSA and, for each
counter i ∈ I , di is the least common multiple of all con-
stants d that appear inside terms of the form i mod d in
γ(S), then we can define the relation∼=M over the set S×CI
of configurations of M in such a way that (s, c) ∼=M (s′, c′)
iff s = s′ and, for all i ∈ I , c(i) = c′(i) (mod di). It
is easy to show that ∼=M is an equivalence of finite index
which is compatible with the transition function ∆M . As
a matter of fact, according to the classification introduced
by Henzinger and Majumdar [13], this means that RESSA
belong to the first class of symbolic transition systems (i.e.,
infinite-state systems having finite bisimilarity quotients).

One can also prove that there is an exponential bound
on the size of the SSA equivalent to a given RESSA. This
shows that the equivalence problem for RESSA is in EXP-
TIME.

3.2. The logical counterpart of RESSA

In [10] Demri describes a logical framework that allows
one to express, in a concise way, integer periodicity con-
straints over a linear temporal domain. The formalism is
based on a fragment of Presburger linear temporal logic, de-
noted PLTLmod. More precisely, the logical language is ob-
tained by combining PLTL (i.e., linear temporal logic with
past-time operators) with a suitable first-order constraint
language IPC++, whose formulas are built via standard
Boolean connectives and existential quantifications, start-
ing from basic atomic formulas of the form x = d, x < d,
x > d, x = y, x ≡k d, and x ≡k y+[d1, d2], where x, y, ...
are variables interpreted over Z and d, k, d1, d2, ... are inte-
ger constants. Given a valuation c : {x, y, ...} → Z for the
variables x, y, ..., the semantics of an atomic formula is the
obvious one:
• c � (x = d) iff c(x) = d,
• c � (x < d) iff c(x) < d,
• c � (x > d) iff c(x) > d,
• c � (x = y) iff c(x) = c(y),
• c � (x ≡k d) iff c(x) ≡k d,
• c � (x ≡k y + [d1, d2]) iff c(x) ≡k c(y) + d for some

d1 ≤ d ≤ d2.
The constraint language IPC++ is a strict fragment of Pres-
burger arithmetic [12].

The language PLTLmod can be viewed as the temporal-
ization (via PLTL) of IPC++. Formally, let ©ixj be the
value of the variable xj at the i-th successor of the current
time point. PLTLmod formulas are PLTL formulas whose

propositional letters are replaced with formulas of the form
ϕ[©i1xj1 , ...,©ikxjk

], which are obtained by substituting
©ilxjl

for all free occurrences of yl in the IPC++-formula
ϕ(y1, ..., yk), for l = 1, . . . , k. A model of a PLTLmod-
formula is an infinite sequence of valuations, namely, a
function of the form c : N× {x, y, ...} → Z.

As an example, we show the encoding of some granu-
larities of the Gregorian Calendar taken from [10]. These
granularities are modeled as infinite sequences of valuations
for the corresponding integer variables as follows:

• sec ≡60 0 ∧ �(0 ≤ sec < 60 ∧ ©sec ≡60 sec + 1),

• min ≡60 0 ∧ �(0 ≤ min < 60 ∧ (sec = 59 →
©min ≡60 min + 1) ∧ (sec 6= 59 → ©min =
min)),

• hour ≡24 0 ∧ �(0 ≤ hour < 24 ∧ (min =
59 ∧ sec = 59 → ©hour ≡24 hour +1) ∧ (min 6=
59 ∨ sec 6= 59 → ©hour = hour)),

• day ≡7 0 ∧ �(0 ≤ day < 7 ∧ (hour = 23 ∧ min =
59 ∧ sec = 59 → ©day ≡7 day + 1) ∧ (hour 6=
23 ∨ min 6= 59 ∨ sec 6= 59 → ©day = day)),

• as for the granularities Month and Year, one can en-
code them by fixing some end dates far ahead in the
time line (such an assumption is necessary since we
cannot use constraints like ©year = year + 1 with-
out incurring in undecidability [6, 10]).

Notice that no propositional variables appear in
PLTLmod. However, any propositional variable P can be
easily encoded by an IPC++-formula of the form xP = 1,
where xP is a fresh variable associated with P .

Demri shows that, like plain LTL but unlike full Pres-
burger LTL, PLTLmod enjoys a PSPACE-complete satisfi-
ability problem [10]. Such a result is achieved by first
defining suitable automaton-based representations for (ab-
stracted) models of PLTLmod-formulas and then by reduc-
ing the satisfiability problem to the emptiness problem for
these automata.

In [10], Demri establishes an interesting connection be-
tween RESSA and linear temporal logics with integer peri-
odicity constraints by reducing the equivalence problem for
RESSA to a satisfiability problem for a suitable fragment of
PLTLmod. To this end, the guards associated with RESSA
secondary transitions are rewritten as Boolean combina-
tions of formulas like x ≡k d and ∃ z. (x ≡k z ∧ y ≡k′ z),
and thus they belong to a (strict) fragment of IPC++, de-
noted IPC∗ in [10].

Let PLTL∗ be the Presburger LTL fragment obtained by
combining PLTL and IPC∗. Demri shows that the equiva-
lence problem for RESSA is reducible to the satisfiability

5

problem for PLTL∗-formulas or, equivalently, to the empti-
ness problem for a suitable class of Büchi automata, where
the input symbols are atomic IPC∗-formulas. The size of
the formulas corresponding to a given instance of the equiv-
alence problem for RESSA is shown to be polynomially
bounded with respect to the size of the automata, thus prov-
ing that the equivalence problem for RESSA is in PSPACE.
Such a result improves the previously known EXPTIME up-
per bound given by Dal Lago and Montanari in [7].

Moreover, in [10] a reduction from the satisfiability
problem for quantified boolean formulas to the equiva-
lence problem for RESSA is also given, thus showing that
the equivalence problem for RESSA is actually PSPACE-
complete.

4. Restricted Labeled Single-string Automata

In this section we introduce a new class of automata,
called restricted labeled single-string automata (RLA for
short), which are an attempt to find a suitable trade-off be-
tween the handiness of SSA and the compactness of (re-
ducible) ESSA [9]. RLA are similar to RESSA, since they
exploit counters to compactly encode repeating patterns of
time granularities. However, the distinctive feature of this
class of automata lies in the structure of the transition func-
tions, which is now more restricted. As an example, we
define a uniform policy of counter update. By exploiting
such restrictions, we will be able to devise improved algo-
rithms for several problems on time granularities, including
the equivalence one.

We now give an intuitive description of RLA structure
and behavior. First of all, to simplify the notation and the
formalization of properties, labels are moved from transi-
tions to states. Moreover, the set of states is partitioned into
two groups, respectively denoted by SΣ and Sε. SΣ is the
set of states where the labeling function is defined, while Sε

is the set of states where it is not defined. Furthermore, like
in the case of ESSA, we distinguish between two kinds of
transition, respectively called primary and secondary transi-
tions. At any point of the computation, at most one (primary
or secondary) transition is taken according to an appropri-
ate rule envisaging the state at which the automaton lies and
the value of the counter associated with that state. Primary
transition functions can be defined in any state, while sec-
ondary transition functions are only defined in non-labeled
states. A primary transition can be taken in a non-labeled
state s only once the secondary transition associated with
s has been consecutively taken c0(s) times, where c0(s) is
the initial valuation for the counter associated with s.

Figure 4 depicts an RLA recognizing the word (J�6)ω,
which represents the granularity Monday in terms of the
granularity Day. States in SΣ are represented by Σ-labeled

J

�

ω

6

Figure 4. An RLA representing Monday.

circles, while states in Sε are represented by triangles. Pri-
mary and secondary transitions are represented by contin-
uous and dashed arrows, respectively. The (initial values
of) counters are associated with states in Sε (for the sake of
readability, we depict them as labels of the secondary tran-
sitions exiting states in Sε).

Definition 4. A restricted labeled (single-string) au-
tomaton (RLA for short) is a tuple M = (SΣ, Sε,Σ,
Ω, δ, γ, s0, c0), where
• SΣ and Sε are disjoint finite sets of (control) states

(hereafter, we shall denote by S the set SΣ ∪ Sε);
• Σ is a finite alphabet;
• Ω : SΣ → Σ is a total labeling function;
• δ : S ⇀ S is a partial primary transition function

whose transitive closure δ+ is irreflexive (namely, it
never happens that (s, s) ∈ δ+);

• γ : Sε → S is a total secondary transition function
such that for every s ∈ Sε, (γ(s), s) ∈ δ+;

• s0 ∈ S is the initial state;
• c0 : Sε → N+ ∪ {ω} is the initial valuation.

Counters of RLA range over the natural numbers ex-
tended with a special value ω; they can be either set to their
initial value or decremented (we tacitly assume that n < ω
for all n ∈ N and ω − 1 = ω).

Let us denote by CSε the set of all valuations of the form
c : Sε → (N ∪ {ω}) for the counters of an RLA M =
(SΣ, Sε,Σ,Ω, δ, γ, s0, c0). A configuration for M is a pair
(s, c), where s ∈ S and c ∈ CSε

.
The transitions of M are taken according to a partial

function ∆M : S×CSε
⇀ S×CSε

satisfying the following
conditions:

i) if s ∈ SΣ and δ(s) is defined, then ∆M (s, c) =
(δ(s), c), namely, if the automaton lies in a labeled state
and there is an exiting primary transition, then it takes
the primary transition, which does not change the valu-
ation,

ii) if s ∈ Sε and c(s) > 0, then ∆M (s, c) = (γ(s), c′),
where c′ = c[c(s) − 1/s], namely, if the automaton
lies in a non-labeled state whose counter has a posi-
tive value, then it takes the secondary transition and it
decrements the counter by 1,

iii) if s ∈ Sε, c(s) = 0, and δ(s) is defined, then
∆M (s, c) = (δ(s), c′), where c′ = c[c0(s)/s], namely,

6

if the automaton lies in a non-labeled state whose
counter has value 0 and if there is an exiting primary
transition, then it takes the primary transition and it re-
initializes the counter,

iv) if none of the above conditions holds, then ∆M (s, c) is
undefined.

Notice that, since ∆M may be not defined on some config-
urations, the run of an RLA may be finite.

The run of an RLA M is defined as follows. Let X∞

be the set of all (finite and infinite) words over X , namely,
X∞ = X∗ ∪ Xω. The run of an RLA M is the pair
(s, c) ∈ S∞ × C∞Sε

of maximum (possibly infinite) se-
quences of states and valuations such that (i) s[1] = s0,
(ii) c[1] = c0, and (iii) ∆M (s[i], c[i]) = (s[i + 1], c[i + 1])
for all 1 ≤ i < |s| (= |c|). Given the RLA M and its
run (s, c), one can extract a (finite or infinite) sequence of
labeled states sΣ ∈ S∞Σ by discarding the valuations and
the non-labeled states. Such a sequence is said to be the la-
beled run of M . We say that M recognizes the word w iff
w = Ω(sΣ) (here Ω is extended from states to sequences of
states in the natural way).

Notice that Definition 4 allows situations where states
and transitions of an RLA form an unconnected (directed)
graph. We can overcome these clumsy situations by dis-
carding useless states and transitions. Since counters of
reachable configurations range over finite domains, it is im-
mediate to see that RLA recognize either finite or ultimately
periodic words.

4.1. RLA-recognizable Words

The solution to the equivalence problem for RLA takes
advantage of the following characterization of the words
recognized by RLA, based on the notions of δ-degree and
γ-degree of states.

The δ-degree of a state s ∈ S is the (unique) natural
number n such that δn(s) is defined, but δn+1(s) is not.
For instance, the initial state of the automaton of Figure 4
has δ-degree 2. For each non-labeled state s ∈ Sε, the γ-
degree of s is the least n ∈ N such that (γ(s), s) ∈ δn. For
instance, the lower-middle state of the automaton of Figure
4 has γ-degree 1.

The notion of γ-degree can then be used to represent the
nested structure of RLA transitions in terms of a binary re-
lation ΓM over the set Sε defined as follows: (s, r) ∈ ΓM

iff s = δi(γ(r)), where i is less than the γ-degree of r. Note
that the reflexive and transitive closure Γ∗M is antisymmet-
ric, namely, (s, r) ∈ Γ∗M and (r, s) ∈ Γ∗M imply s = r.
Thus, Γ∗M can be given the status of a well-founded par-
tial order over the set of non-labeled states. Such a partial
order immediately suggests an induction principle, called γ-
induction, which we will extensively use in both definitions
and proofs.

As an example, if we denote by s0 the initial state of the
RLA of Figure 4, by s1 its successor, by s2 the top-most
state, and by s3 the right-most state, we have that

• the δ-degree of s0 (respectively, s1, s2, s3) is 2 (respec-
tively, 1, 2, 0),

• the γ-degree of s1 is 1 and the γ-degree of s3 is 2,

• ΓM = {(s1, s3)} and Γ∗M consists the pair in ΓM plus
the pairs (s1, s1) and (s3, s3).

For every state s, let σM
s be the finite or infinite word

inductively defined as follows:

• if s ∈ SΣ, then σM
s = Ω(s),

• if s ∈ Sε and m is the γ-degree of s, then σM
s =(

σM
γ(s) · σM

δ(γ(s)) · ... · σM
δm−1(γ(s))

)c0(s).

The well-definedness of σM
s directly follows from the prin-

ciple of γ-induction.

RLA-recognizable words can be characterized as expres-
sions like (�4J�2)ω and �6((�2�)2�2)ω, which feature
nested repetitions, as stated by the following proposition.

Proposition 1 (Dal Lago, Montanari, Puppis [9]). The word
recognized by an RLA M = (SΣ, Sε,Σ,Ω, δ, γ, s0, c0) is of
the form σM

s0
· σM

δ(s0)
· ... · σM

δn(s0)
, where n is the δ-degree

of s0.

4.2. A Complexity Measure for RLA

We now briefly describe a measure of complexity for
RLA (for further details, we refer the reader to [9]). Be-
sides the usual complexity measure based on the number of
states of the automaton, there is another natural complexity
measure which takes into account the nesting structure of
RLA transition relations. Such a complexity measure plays
a fundamental role in the analysis of main algorithms on
RLA [9] and it will be used in the next section in the proof
of one basic lemma.

For every state s of an RLA M and every integer n, let
CM

s,n be defined as follows (here we use double induction
on s and n, where the ordering for the first, dominant, argu-
ment is induced by the relation Γ∗M):

• if n < 0, then CM
s,n = 0;

• if n ≥ 0, s ∈ SΣ, and δ(s) is undefined, then CM
s,n = 1;

• if n ≥ 0, s ∈ SΣ, and δ(s) is defined, then CM
s,n =

1 + CM
δ(s),n−1;

• if n ≥ 0, s ∈ Sε, m is the γ-degree of s, and δ(s) is
undefined, then CM

s,n = 1 + CM
γ(s),m−1;

7

• if n ≥ 0, s ∈ Sε, m is the γ-degree of s, and δ(s) is
defined, then CM

s,n = 1+max
(
CM

δ(s),n−1,C
M
γ(s),m−1

)
.

The complexity ‖M‖ of M is defined as ‖M‖ = CM
s0,n,

where s0 is the initial state of M and n is the δ-degree of
s0. It is easy to show that ‖M‖ ≤ |M |2. As an example,
the complexity of the automaton in Figure 4 is 6.

The running time of several algorithms operating on
RLA-based representations of time granularities, e.g., gran-
ule conversion ones, can be expressed in terms of the com-
plexities of the involved automata. This is the case, for in-
stance, with simple algorithms that look for occurrences of
particular symbols in the word recognized by a given RLA
M , which require time O(‖M‖). In many cases, the run-
ning time of such algorithms turns out to be sub-linear with
respect to the number of transitions to be taken to reach
the addressed symbol occurrence, thus showing that algo-
rithms working on RLA-based representations outperform
those running on equivalent granspecs/SSA.

As an example, by exploiting the optimization algo-
rithms described in [9], we can obtain an RLA representing
the granularity Month in terms of days with 87 control states
and complexity 14. Both these values are significantly less
than the size of any equivalent granspec/SSA (see Section
3). Such an automaton is described by the following expres-
sion:

 „
�2(�28J)2

“
�30

`
(J�29)2�

´2 J
”2

„
�3(�27J)2

“
�30

`
(J�29)2�

´2 J
”2
«3«25

„„
�3(�27J)2

“
�30

`
(J�29)2�

´2 J
”2
«4

„
�2(�28J)2

“
�30

`
(J�29)2�

´2 J
”2

„
�3(�27J)2

“
�30

`
(J�29)2�

´2 J
”2
«3«24«3

!ω

The above arguments account for the compactness and
tractableness of RLA compared to granspecs/SSA.

5. The Equivalence Problem for RLA

In this section we focus our attention on the equivalence
problem for RLA-based representations of time granulari-
ties. As we previously pointed out, two single-string au-
tomata represent the same time granularity iff they accept
the same ultimately periodic word. In Section 3 the equiv-
alence problem for RESSA has been shown to be solvable
in polynomial space with respect to the size of the input
automata. Here we show that in the case of RLA we can
devise a more efficient algorithm, which tests the (non-)

equivalence of two given RLA in non-deterministic poly-
nomial time. Our solution is based on a reduction of the
non-equivalence problem to a number-theoretic problem,
precisely, the problem of testing the satisfiability of linear
diophantine equations, where variables are constrained by
lower and upper bounds.

We start by giving some preliminary definitions. The
operations of addition + and multiplication · in Z can be
naturally extended to the power-set 2Z as follows: if S, T ⊆
Z, then S +T = {x+ y ∈ Z : x ∈ S, y ∈ T} and S ·T =
{x · y ∈ Z : x ∈ S, y ∈ T}. By a slight abuse of notation,
we shall write expressions of the form k · S, denoting the
set {k · x : x ∈ S}. Furthermore, we call interval any
subset of Z of the form [i, j] = {x : i ≤ x ≤ j}, where
i ∈ Z ∪ {−ω} and j ∈ Z ∪ {ω}.

Intuitively, the idea underlying our solution to the equiv-
alence problem for RLA is to represent the set of positions
of all the occurrences of a labeled state in the labeled run
of an RLA M by a union of m distinct sets of the form
k1I1 + ... + knIn, where the values m and n are polynomi-
ally bounded with respect to the number of states of M and
each Ij is a suitable interval of Z.

Given two RLA M and N , one can decide whether
M and N recognize the same infinite word by testing the
emptiness of every set resulting from the intersection of two
expressions E1 and E2, where E1 represents the positions
of the occurrences of an a-labeled state of M and E2 repre-
sents the positions of the occurrences of a b-labeled state of
N , with a 6= b.

The latter problem can then be reduced to the problem
of testing the non-satisfiability of some linear diophantine
equations with lower and upper bounds on the variables.
Even though the satisfiability problem for linear diophan-
tine equations with bounds on variables is known be NP-
complete, several solutions that perform well in practice
(even on equations with thousands of variables) have been
proposed in literature (see, for instance, [1]).

The above argument shows that the equivalence problem
for RLA is in co-NP. We provide no proof of the co-NP-
hardness of the equivalence problem for RLA. As a matter
of fact, we conjecture that the problem can be solved by a
deterministic algorithm which takes polynomial time with
respect to the size of the input automata. Unfortunately, at
the moment we are only able to provide a non-deterministic
algorithm for the non-equivalence problem of RLA.

The argument can be formalized as follows. Given an
RLA M = (SΣ, Sε,Σ,Ω, δ, γ, s0, c0), let us denote by
(s, c) its (unique) run and by sΣ the corresponding labeled
run. Without loss of generality, we can temporarily assume
that Ω is the identity function, which maps a labeled state
s to itself (hence, we have Σ = SΣ). Such an assumption
allows us to think of σM

s , as defined in Section 4, as a se-

8

quence of labeled states, rather than a sequence of symbols.
From Proposition 1, we immediately have

sΣ = σM
s0
· σM

δ(s0)
· ... · σM

δn(s0)
,

where n is the δ-degree of s0. In addition, for every non-
labeled state s ∈ Sε, with γ-degree m, we set:

ρM
s = σM

γ(s) · σM
δ(γ(s)) · ... · σM

δm−1(γ(s)).

To keep track of the set of positions of any labeled state,
we introduce the notion of (p, q-succinct) linear progres-
sion.

Definition 5. Given a set P ⊆ Z and two positive integers
p, q, we say that P is a p, q-succinct linear progression if
there exist m ≤ p, n1, ..., nm ≤ q, k1,1, ..., k1,n1 , ..., km,1,
..., km,nm

∈ Z, and some intervals I1,1, ..., I1,n1 , ..., Im,1,
..., Im,nm

such that P =
⋃

1≤i≤m

∑
1≤j≤ni

ki,jIi,j .

For every s ∈ SΣ, every r ∈ S, and every n ∈ Z less
than or equal to the δ-degree of s, we denote by Ps,r,n the
set of positions of all the occurrences of s in the sequence
σM

r · σM
δ(r) · ... · σM

δn(r). Clearly, the set of positions of all
the occurrences of s in the labeled run sΣ of M is Ps,s0,n,
where n is the δ-degree of s0.

Now, by exploiting the definition of σM
r , we can easily

verify the following recursive equations:

• Ps,r,n = ∅, if n < 0;

• Ps,r,n = ∅, if n ≥ 0, r ∈ SΣ \ {s}, and δ(r) is unde-
fined;

• Ps,r,n = {1}, if n ≥ 0, r = s, and δ(r) is undefined;

• Ps,r,n = Ps,δ(r),n−1 + 1, if n ≥ 0, r ∈ SΣ \ {s}, and
δ(r) is defined;

• Ps,r,n = {1} ∪
(
Ps,δ(r),n−1 + 1

)
, if n ≥ 0, r = s,

and δ(r) is defined;

• Ps,r,n = Ps,γ(r),m−1 + |ρM
r | · [0, c0(r) − 1], if n ≥ 0,

r ∈ Sε, m is the γ-degree of r, and δ(r) is undefined;

• Ps,r,n =
(
Ps,γ(r),m−1 + |ρM

r | · [0, c0(r) − 1]
)
∪(

Ps,δ(r),n−1 + |σM
r |

)
, if n ≥ 0, r ∈ Sε, m is the γ-

degree of r, and δ(r) is defined.

The above equations lead to a straightforward procedure
RLAPositions(M, s, r, n) that computes (a progression-
based representation of) the set Ps,r,n for the automaton M .

RLAPositions(M, s, r, n)
1: let M = (SΣ, Sε,Σ,Ω, δ, γ, s0, c0)
2: if n < 0 then
3: return ∅

4: else if r ∈ SΣ then
5: if δ(r) = ⊥ then
6: if r 6= s then
7: return ∅
8: else
9: return {1}

10: end if
11: else
12: P ← 1 + RLAPositions(M, s, δ(r), n− 1)
13: if r 6= s then
14: return P
15: else
16: return {1} ∪ P
17: end if
18: end if
19: else
20: m← γ-degree(r)
21: P ← RLAPositions(M, s, γ(r),m − 1) +

|ρM
r | ∗ [0, c0(r)− 1]

22: if δ(r) = ⊥ then
23: return P
24: else
25: Q← RLAPositions(M, s, δ(r), n− 1) + |σM

r |
26: return P ∪ Q
27: end if
28: end if

The following lemma shows that the set Ps,r,n is actually
an |S|2, |S|2-succinct linear progression.

Lemma 2. For every s ∈ SΣ, every r ∈ S, and every
n ∈ Z less than or equal to the δ-degree of r, Ps,r,n is a
|S|2, |S|2-succinct linear progression.

Proof. First of all, note that the succinct linear progressions
satisfy the following properties (compositionality):

• if P is a p, q-succinct linear progression, then P +kI is
a p, q + 1-succinct linear progression for every integer
k and every interval I ,

• if P is a p, q-succinct linear progression and P ′ is a
p′, q′-succinct linear progression, then P ∪ P ′ is a p +
p′,max (q, q′)-succinct linear progression.

Now, on the grounds of the recursive definition of Ps,r,n, for
every pair of states s, r and every integer n, we can write

Ps,r,n =
⋃

1≤i≤m

∑
1≤j≤ni

ki,jIi,j

for some integers m,n1, ..., nm and then denote by pr,n (re-
spectively, qr,n) a suitable upper bound for m (respectively,
for n1, ..., nm). Clearly, Ps,r,n is a pr,n, qr,n-succinct linear
progression, where pr,n and qr,n may depend on r and n,

9

but not on s. Moreover, by exploiting the compositionality
of succinct linear progressions, we can assume that pr,n and
qr,n satisfy the following recursive equations:

• pr,n = 0, if n < 0;

• pr,n = 1, if n ≥ 0, r ∈ SΣ, and δ(r) is undefined;

• pr,n = 1 + pδ(r),n−1, if n ≥ 0, r ∈ SΣ, and δ(r) is
defined;

• pr,n = pγ(r),m−1, if n ≥ 0, r ∈ Sε, m is the γ-degree
of r, and δ(r) is undefined;

• pr,n = pγ(r),m−1 + pδ(r),n−1, if n ≥ 0, r ∈ Sε, m is
the γ-degree of r, and δ(r) is defined;

• qr,n = 0, if n < 0;

• qr,n = 1, if n ≥ 0, r ∈ SΣ, and δ(r) is undefined;

• qr,n = 1 + qδ(r),n−1, if n ≥ 0, r ∈ SΣ, and δ(r) is
defined;

• qr,n = 1 + qγ(r),m−1, if n ≥ 0, r ∈ Sε, m is the
γ-degree of r, and δ(r) is undefined;

• qr,n = 1 + max (qδ(r),n−1, qγ(r),m−1), if n ≥ 0, r ∈
Sε, m is the γ-degree of r, and δ(r) is defined.

Finally, by exploiting double induction on r and n, it is easy
to verify that

pr,n ≤

∣∣∣∣∣
{(

t, t′
)

:
t′ = δi(r), 0 ≤ i ≤ n,

t = t′ ∈ SΣ ∨ (t, t′) ∈ Γ∗M

}∣∣∣∣∣ ≤ |S|2
qr,n = CM

r,n ≤ |S|
2
.

Consider now the generic case of an RLA whose labeling
function Ω is not necessarily the identity function.

Proposition 3. For every RLA M = (SΣ, Sε,Σ,Ω, δ, γ, s0,
c0) and every labeled state s ∈ SΣ, the set of positions of
all the occurrences of s in sΣ is a |S|2, |S|2-succinct linear
progression.

Proof. Given an RLA M = (SΣ, Sε,Σ,Ω, δ, γ, s0, c0), we
define a new RLA M ′ = (SΣ, Sε, SΣ, Ω′, δ, γ, s0, c0),
where Ω′(s) = s for every s ∈ SΣ. Clearly, the labeled
run of M coincides with the labeled run of M ′. Therefore,
the claim trivially follows from Lemma 2.

As a consequence of Proposition 3, we have that the set
of positions of all the occurrences of a labeled state in the
labeled run of an RLA can be effectively represented by a
succinct linear progression P , where the number of its terms
(i.e., sets of the form k · I) is polynomially bounded by the
number of control states of the automaton.

Moreover, the values defining each term of P of the form
k ·I can be represented using polynomial space with respect
to the size of the automaton (here the size of the automaton
comprises the number of the control states and the size of
the initial valuation for the counters).

This basically means that the size of P is polynomially
bounded by the size of the automaton. It also follows that
RLAPositions(M, s, s0, n) takes polynomial time with re-
spect to the size of the input.

We conclude the section by showing how to reduce the
non-equivalence problem for RLA to the satisfiability prob-
lem for linear diophantine equations.

Theorem 4. Two RLA M = (SΣ, Sε,Σ,Ω, δ, γ, s0, c0) and
N = (S′Σ, S′ε,Σ,Ω′, δ′, γ′, s′0, c

′
0) recognize two different

words iff there exist a state s ∈ SΣ and a state s′ ∈ S′Σ,
with Ω(s) 6= Ω′(s′), such that

Ps ∩Qs′ 6= ∅,

where Ps (respectively, Qs′) is the set of positions of all the
occurrences of s (respectively, s′) in the labeled run of M
(resp. N).

Proof. If M and N recognize two different words, say w
and w′, we let i be the first position such that w[i] 6= w′[i].
We then define s = sΣ[i] and s′ = s′Σ. Clearly, Ω(s) 6=
Ω(s′) holds and i belongs to both Ps and Qs′ . Conversely,
if M and N recognize the same word w, then w = Ω(sΣ) =
Ω′(s′Σ), where sΣ (respectively, s′Σ) is the labeled run of M
(respectively, N). This implies that, for every s ∈ SΣ and
s′ ∈ S′Σ, with Ω(s) 6= Ω′(s′), Ps ∩Qs′ = ∅ holds.

Let P and Q be two linear progressions. If we write

P =
⋃

1≤i≤m

(
ki,1Ii,1 + ... + ki,ni

Ii,ni

)
,

Q =
⋃

1≤i≤m′

(
hi,1Ji,1 + ... + hi,n′i

Ji,n′i

)
,

then we have
P ∩Q 6= ∅

iff, for some 1 ≤ i ≤ m and 1 ≤ i′ ≤ m′, the follow-
ing linear diophantine equation with bounds on variables is
satisfiable:

ki,1xi,1 + ... + ki,nixi,ni = hi′,1yi′,1 + ... + hi′,niyi′,n′
i′

∀ 1 ≤ j ≤ ni. min(Ii,j) ≤ xi,j ≤ max (Ii,j)
∀ 1 ≤ j ≤ n′i′ . min(Ji′,j) ≤ yi′,j ≤ max (Ji′,j)

Checking the satisfiability of a generic linear diophan-
tine equation with bounds on variables is known to be an
NP-complete problem. As a matter of fact, as regards the
NP-hardness, one can reduce the well-known subset sum

10

problem (i.e., given a finite set Z of integers, decide whether
there exists a subset Z ′ of Z that exactly sums to 0) to
the satisfiability problem for linear diophantine equations.
More precisely, given a finite set Z = {k1, ..., kn} of inte-
gers, we define the linear diophantine equation k1z1 + ... +
knzn = 0, where each variable zi can be either 0 or 1. It
clearly follows that the equation is satisfiable iff Z is a pos-
itive instance of the subset sum problem.

Even though the satisfiability problem for linear dio-
phantine equations with bounds on variables is NP-
complete, several efficient algorithms, based on non-trivial
properties of rings and lattices, have been proposed in the
literature, e.g., [1]. These algorithms can solve (systems of)
linear diophantine equations with thousands of variables in
a reasonable time and thus they can be effectively exploited
to test the emptiness of sets resulting from the intersection
of two linear progressions.

The following (non-deterministic) algorithm solves the
non-equivalence problem for RLA (namely, it has a compu-
tation that returns true iff the two input automata were not
equivalent) by reducing it to the satisfiability problem for
linear diophantine equations.

RLANonEquivalence(M,N)
1: let M = (SΣ, Sε,Σ,Ω, δ, γ, s0, c0)
2: let N = (S′Σ, S′ε,Σ,Ω′, δ′, γ′, s′0, c

′
0)

3: n← δ-degree(s0)
4: for all s ∈ SΣ do
5: P [s]← RLAPositions(M, s, s0, n)
6: end for
7: n′ ← δ-degree(s′0)
8: for all s′ ∈ S′Σ do
9: Q[s′]← RLAPositions(N, s′, s′0, n

′)
10: end for
11: choose s ∈ SΣ, s′ ∈ S′Σ with Ω(s) 6= Ω′(s′)
12: if P [s] ∩Q[s′] 6= ∅ then
13: return true
14: else
15: return false
16: end if

6. Conclusions

In this paper, we considered the problem of modeling
time granularities and that of testing the equivalence of their
specifications. We first showed how to finitely represent ul-
timately periodic time granularities in terms of automata,
starting from the most basic notion of automaton (single-
string automaton) and then extending it with counters in or-
der to compactly encode repetitions (extended single-string
automaton and restricted labeled single-string automaton).

Then, we focused our attention on equivalence problems
for automaton-based specifications of time granularities,
proving that (i) the equivalence problem for single-string
automata is decidable in linear time, (ii) the equivalence
problem for reducible extended single-string automata is
decidable in polynomial space and it is complete for such
a class (this result is due to Demri [10]), and (iii) the (non-
)equivalence problem for restricted labeled single-string au-
tomata is decidable in non-deterministic polynomial time.

As for the non-equivalence problem for restricted la-
beled single-string automata, we exactly showed that it can
be reduced to the satisfiability problem for linear diophan-
tine equations with bounds on variables. This latter prob-
lem is known to be NP-complete, which immediately pro-
vides an upper bound to the complexity of the original prob-
lem. However, it remains an open question to establish
whether such an upper bound is optimal or not, that is, to
establish whether the equivalence problem for restricted la-
beled single-string automata is co-NP-complete or not. It
is conceivable that the equivalence problem for restricted
labeled single-string automata may enjoy a deterministic
polynomial-time solution, as happens, for instance, for a
number of different problems over restricted labeled single-
string automata, e.g., granule conversion problems and op-
timization problems [8, 9].

Acknowledgements

We would like to thank the anonymous referees for their
useful remarks and constructive criticisms.

References

[1] K. Aardal, C. A. Hurkens, and A. Lenstra. Solving a sys-
tem of linear diophantine equations with lower and upper
bounds on the variables. Mathematics of Operations Re-
search, 25(3):427–442, 2000.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[3] C. Bettini, S. Jajodia, and X. Wang. Time Granulari-
ties in Databases, Data Mining, and Temporal Reasoning.
Springer, July 2000.

[4] D. Bresolin, A. Montanari, and G. Puppis. Time granulari-
ties and ultimately periodic automata. In Proceedings of the
9th European Conference on Logics in Artificial Intelligence
(JELIA), volume 3229 of LNCS, pages 513–525. Springer,
2004.

[5] C. Combi, M. Franceschet, and A. Peron. Representing and
reasoning about temporal granularities. Journal of Logic and
Computation, 14:51–77, 2004.

[6] H. Comon and V. Cortier. Flatness is not a weakness. In
Proceedings of the 14th International Conference on Com-
puter Science Logic (CSL), volume 1862 of LNCS, pages
262–276. Springer, 2000.

11

[7] U. Dal Lago and A. Montanari. Calendars, time granulari-
ties, and automata. In Proceedings of the 7th International
Symposium on Spatial and Temporal Databases (SSTD),
volume 2121 of LNCS, pages 279–298. Springer, 2001.

[8] U. Dal Lago, A. Montanari, and G. Puppis. Towards com-
pact and tractable automaton-based representations of time
granularity. In Proceedings of the 8th Italian Conference
on Theoretical Computer Science (ICTCS), volume 2841 of
LNCS, pages 72–85. Springer, 2003.

[9] U. Dal Lago, A. Montanari, and G. Puppis. Compact and
tractable automaton-based representations for time granu-
larities. Theoretical Computer Science, 373(1-2):115–141,
2007.

[10] S. Demri. LTL over integer periodicity constraints. In
I. Walukiewicz, editor, Proceedings of the 7th International
Conference on Foundations of Software Science and Compu-
tation Structures (FOSSACS), volume 2987 of LNCS, pages
121–135. Springer, 2004.

[11] J. Euzenat and A. Montanari. Time granularity. In M. Fisher,
D. Gabbay, and L. Vila, editors, Handbook of Temporal
Reasoning in Artificial Intelligence, pages 59–118. Elsevier,
2005.

[12] S. Ginsburg and E. Spanier. Semigroups, Presburger for-
mulas and languages. Pacific Journal of Mathematics,
16(2):285–296, 1966.

[13] T. Henzinger and R. Majumdar. A classification of symbolic
transition systems. In Proceedings of the 17th International
Symposium on Theoretical Aspects of Computer Science
(STACS), volume 1770 of LNCS, pages 13–34. Springer,
2000.

[14] D. Knuth, J. Morris, and V. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6:323–350, 1977.

[15] B. Leban, D. McDonald, and D. Foster. A representation
for collections of temporal intervals. In Proceedings of the
AAAI National Conference on Artificial Intelligence, vol-
ume 1, pages 367–371. AAAI Press, 1986.

[16] M. Minsky. Computation: Finite and Infinite Machines.
Prentice-Hall, 1967.

[17] M. Niezette and J. Stevenne. An efficient symbolic repre-
sentation of periodic time. In Proceedings of the Interna-
tional Conference on Information and Knowledge Manage-
ment (CIKM), pages 161–168, Baltimore, MD, 1992. ACM
Press.

[18] P. Ning, S. Jajodia, and X. Wang. An algebraic represen-
tation of calendars. Annals of Mathematics and Artificial
Intelligence, 36:5–38, 2002.

[19] D. Perrin and P. Schupp. Automata on integers, recurrence
distinguishability, and the equivalence and decidability of
monadic theories. In Proceedings of the Symposium on
Logic in Computer Science (LICS), pages 301–304. IEEE
Computer Society, 1986.

[20] J. Wijsen. A string-based model for infinite granularities.
In C. Bettini and A. Montanari, editors, Proceedings of
the AAAI Workshop on Spatial and Temporal Granularities,
pages 9–16. AAAI Press, 2000.

12

